Sunday, April 18, 2021

THis is the question for maths

asdlkasd

Show Answer
lskd

Solution: \[Then, \left(\frac{x\times14\times2}{100}\right)+\left( \frac{\left(13900-x\right)\times11\times2}{100}\right) = 3508 \\ \Rightarrow 28x-22x = 350800 - \left(13900 \times 22 \right)\\ \Rightarrow 6x = 45000 \\ \Rightarrow x = 7500\\ \text{So, sum invested in Scheme B:} \\ = Rs. \left(13900-7500\right) \\ =Rs. 6400\]

asdasd

asd

Show Answer
sdf

Solution: \[\left. \begin{array} { l } { \text { Then, } ( \frac { x \times 14 \times 2 } { 100 } ) + ( \frac { ( 13900 – x ) \times 11 \times 2 } { 100 } ) = 3508 } \\ { \Rightarrow 28 x – 22 x = 350800 – ( 13900 \times 22 ) } \\ { \Rightarrow 6 x = 45000 } \\ { \Rightarrow x = 7500 } \\ { \text { So, sum invested in Scheme } B:}\\ {= Rs . ( 13900 – 7500 ) = Rs .6400 } \end{array} \right.\]

qasd

asd

Show Answer
asd

Solution: Let the sum invested in Scheme A be Rs. x and that in Scheme B be Rs. (13900 – x). \[\left. \begin{array} { l } { \text { Then, } ( \frac { x \times 14 \times 2 } { 100 } ) + ( \frac { ( 13900 – x ) \times 11 \times 2 } { 100 } ) = 3508 } \\ { \Rightarrow 28 x – 22 x = 350800 – ( 13900 \times 22 ) } \\ { \Rightarrow 6 x = 45000 } \\ { \Rightarrow x = 7500 } \\ { \text { So, sum invested in Scheme } B:}\\ {= Rs . ( 13900 – 7500 ) = Rs .6400 } \end{array} \right.\]

asd

asd

Show Answer
asdasf

Solution: asd

asasas

\[\left. \begin{array} { l }
\left(\frac{x\times14\times2}{100}\right)+\left(
\frac{\left(13900-x\right)\times11\times2}{100}\right) = 3508 \\
\Rightarrow 28x-22x = 350800 – \left(13900 \times 22 \right)\\
\Rightarrow 6x = 45000 \\
\Rightarrow x = 7500\\
\text{So, sum invested in Scheme B:} \\
= Rs. \left(13900-7500\right) \\
=Rs. 6400
\end{array} \right.\]

User Explanation Form


Warning: Cannot modify header information - headers already sent by (output started at /home/customer/www/mastermcqs.com/public_html/index.php:4) in /home/customer/www/mastermcqs.com/public_html/wp-includes/pluggable.php on line 1296